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Abstract—This paper investigates the intersection of
data-driven controller synthesis and classical optimal
control theory for uncertain dynamical systems. We
address the problem of synthesising robust controllers for
parametric models whose parameter values are governed
by an unknown probability distribution. Utilising a data-
driven framework based on the Scenario Approach,
we extend the recently developed subsurface descent
algorithm to jointly learn a controller and a correspond-
ing reachability certificate function from a finite set of
sampled trajectories. We further show that the synthe-
sised certificate approximates the optimal Value Function
arising from the discrete-time Bellman equation. We
validate this approach through a numerical experiment,
showing that the data-driven controller approximates
the optimal policy derived from the Bellman equation,
thereby providing a bridge between data-driven certifi-
cate synthesis and optimal control theory.

I. INTRODUCTION

The behaviour of numerous complex real-world phe-
nomena can be described and predicted through the
use of dynamical systems. It is often critical to verify
that the evolution of these systems satisfies certain
properties, such as safety, stability, or reachability.
Out of several approaches employed to verify the
properties of dynamical systems, certificate synthesis
emerges as a scalable and robust framework particu-
larly well suited to the recent developments in data-
driven techniques. In this framework, the goal is to
uncover a function that satisfies a set of inequalities
along system trajectories. If found, such a certificate
provides a formal guarantee that the system satisfies
the desired property. The subsurface descent algorithm
(SSD) [I] is a promising method for synthesising
control certificates from a dataset of system trajecto-
ries, emerging from the so-called Scenario Approach
Theory [2]. In this framework, the authors of [I]
train a neural network on a finite number of closed-
loop trajectories coming from an arbitrary (potentially
nonconvex) discrete dynamical system, resulting in
the synthesis of a control certificate for a specified
property (safety, reachability, or reach-while-avoid).
Coupled with recent advancements in the Scenario
Approach theory for Compression Learning [3], the

algorithm’s output certificate functions are supported
by probably approximately correct (PAC) probabilistic
guarantees on their generalisation properties: namely,
on how likely it is that the certificate remains valid
when applied to a new system trajectory not used in
the training dataset. As a byproduct of the certificate
synthesis procedure, the SSD algorithm also identifies
the compression set (the subset of the training set
used to identify the certificate) and its cardinality,
the compression, a quantity used to provide the PAC
guarantees. While the SSD framework provides a pow-
erful tool for verifying closed-loop systems, a more
fundamental challenge is synthesising control policies
that enforce these properties on uncertain systems.
Building upon the foundational work in [1], we extend
the SSD algorithm to the problem of joint controller
and certificate synthesis for uncertain parametric mod-
els. In this setting, the system dynamics are known
but depend on parameters governed by an unknown
probability distribution. Rather than verifying a pre-
existing controller, in this paper seeks to learn a robust
control policy alongside the certificate that verifies
it. This is achieved by nesting a modified version
of the SSD algorithm within an outer-loop procedure
that updates the controller and the resulting system
trajectories in response to certificate violations. The
proposed scheme synthesises both a control policy,
and a certificate function, from open-loop, discrete-
time dynamical system trajectories.

This methodology is inextricably linked to optimal
control theory, where optimal control policies are
derived from the minimisation of cost functionals [4].
Central to this framework is the Hamilton-Jacobi-
Bellman (HJB) equation, a partial differential equa-
tion (PDE) whose solution, the Value Function, pro-
vides both a necessary and sufficient condition for
optimality [4]. However, the practical application of
HJB theory is frequently hindered by the “curse of
dimensionality,” rendering the direct solution of the
PDE computationally intractable for high-dimensional
systems. Furthermore, standard optimal control formu-



lations typically assume a precise deterministic model,
which is often unavailable in real-world scenarios char-
acterised by uncertainty. We address this limitation by
extending the setup in [1] to include uncertainty in our
control dynamics. Formally, we consider a discrete-
time dynamical system evolving in a bounded state
space X C R"™. The system dynamics are governed
by function f: X x U x V — R", such that the state
evolution is given by:

xlk + 1] = f(x[k], u[k]; v), (R}

where z[k] € X is the state at time step k, u[k] €
U C R™ is the control input constrained to a hyper-
rectangular set I/, and v € V represents an uncertain
parameter vector. We assume the initial state z[0]
is drawn from an initial set X; C X according
to a probability measure P, and the parameter v
is drawn from uncertainty set ) according to an
unknown distribution P,. Additionally, we define a
(deterministic) compact goal set Xg C X, and we
denote its boundary as 0 X . The sequence of states
¢ = {a[k]}]_, constitutes a trajectory of the system
over a finite horizon T' € N . With a slight abuse
of notation, we define the trajectory set = by denot-
ing in turn the joint sets =,y = Uueu Ep,u and
Eu,v = Uyep Eu,v joining the two together to obtain
E = Upey Zvu = Uy Eu,v- This model allows
us to incorporate knowledge about a system whilst
allowing for uncertainty in some model parameters.
Importantly, we seek to find a controller that is robust
to different parameter instantiations, as opposed to
one that depends on the parameters. In this proba-
bilistic setting, the classical optimal control objective
transforms into minimising the expected cost over the
distribution of parameters and initial conditions. We
define a running cost L(x, u) (the system’s lagrangian)
and a terminal cost K (x), seeking a control policy
u : X — U that minimises the functional:

Tao.w) = By | 3 Lite. 2lk] u(e{k])) + K (={T))
k=0

(1.2)
The optimal Value Function V*(x) is defined as the
minimum expected cost-to-go from state x. In the
deterministic case (given a fixed realisation v), this
function satisfies the discrete-time Bellman equation:

V¥ (elk]) = min {L(ty, 2[K], uwe) + V" (@lk +1])}
(13)

Our primary contribution is to demonstrate that data-
driven certificate synthesis techniques can be viewed as
a scalable approximation to the optimal control frame-
work. We extend the methodology proposed in [!] to
synthesise both a certificate function (parameterised by
a neural network) and a controller from a finite dataset
of sampled trajectories. By interpreting the certificate
conditions not merely as property constraints but as
relaxations of the Bellman equation (I.3), we connect

data-driven verification and HJB theory. Specifically,
we show that minimising the residual of the Bell-
man equation within the subsurface descent (SSD)
framework (for an appropriate choice of initial states
X7 and goal sets yields a controller that is not only
robustly stabilising but also optimal with respect to the
underlying cost structure. The proposed methodology
presents a potential bridge between Optimal Control
Theory and Data-Driven Certificate Synthesis.

Notation. We use {£'}| to denote a sequence in-
dexed by i € {1,2,...,N}. We adopt the notation
x[k] to indicate the system state at the discrete time
step k, corresponding to the continuous time instance
ti, = kT4, where Ty is the sampling period. We denote
by ¢(§) the condition that a trajectory £ satisfies the
desired property, which evaluates to true if the prop-
erty holds. The symbol —¢(&) represents the logical
negation (i.e., property violation), such that —¢(§) is
true if and only if the trajectory £ fails to satisfy the
specification.

II. REACHABILITY CERTIFICATE

To verify that the uncertain dynamical system satisfies
a desired specification, we seek a scalar function,
termed a certificate, over the state space. The existence
of such a function, subject to specific inequalities,
provides a formal guarantee on the system’s behaviour.
While the framework supports various properties, in-
cluding safety and reach-while-avoid [!], we focus
here on reachability certificates. This choice is mo-
tivated by the direct theoretical connection between
Reachability certificates (which resemble Lyapunov
functions) and the Value Function in Optimal Control
Theory. A trajectory § € =,y is said to satisfy the
reachability property, denoted @reach, if it enters the
goal set within the time horizon T

ODreach(§) =3k € {0,..., T} : z[k] € Xg.

Verifying this property directly over the infinite set
of all possible trajectories is intractable. Instead, we
employ certificate function V' : R” — R and a
controller v : X — U. We define the certificate
conditions such that their satisfaction implies @reach
holds for the controlled system. Fixing a scalar design
parameter 6 > —infycx, V(y) > 0, we require the
certificate to satisfy structural constraints on the level
set:

(L1)

V(z) <0, Vze X, (11.2)
V(z) > -0, Vze dXg, (I1.3)
V(z) > -6, Vre X\ Xg, (IL.4)
V(z) >0, VzxeR"\X. (IL.5)

These conditions ensure that the certificate is non-
positive on the initial set (II.2), positive outside the
domain (to guarantee we do not exit it (IL.5)), while
the sublevel set V' less than —§ should be contained
within the goal set (IL.4) (with the inequality relaxed



on the goal border (II.3)). To guarantee the system
reaches the —4 sublevel set (and thus X ), we impose
an additional decrease condition along the system
dynamics:

V(f (@[k], u(z[k]);v)) — V(2[k])

1
< —=( sup V(y)+46),
<y€)1()1 ) ) (IL.6)
k=0,....kg—1, Yvel,

kg :=min{k € {0,...,T}: V(z[k]) < -0}

i.e. the condition must hold for all  along the trajec-
tory until the goal is reached. This condition acts as
a relaxation of the standard Lyapunov decrease; rather
than requiring asymptotic convergence, it enforces a
minimum decay rate sufficient to drive the state into
the target set X within finite time 7'. If a pair (V, u)
satisfies conditions (II.2)—(I1.6) for all parametric re-
alisations v € V), then the controller u robustly steers
the system to the goal set Xg.

III. DATA-DRIVEN SYNTHESIS

We now turn to the problem of synthesising a con-
troller and the corresponding control certificate from
a finite dataset of trajectories. We adopt a data-
driven perspective where the initial state x[0] and the
uncertain parameter v are random variables drawn
from a product probability space (X; x V,F,P). We
assume that N initial condition and parameter pairs
are drawn independently and identically distributed
(i.i.d.) from P. For a fixed controller u, using sam-
ples {z[0],v'}Y¥; ~ PV we can unravel a set of
trajectories {¢'}Y, € Z,y. We parameterise the
certificate V() and the controller u, () using two
separate neural networks with parameters 6 and 7,
respectively, which we wish to learn'. This setting is
almost identical to that of [1], with the only difference
being the introduction of a new neural network with
output vector 7 used to parametrise the controller. We
begin by unravelling trajectories according to some
initialised fixed controller ug, which may be warm-
started for improved convergence using information
about the system dynamics, or is otherwise initialised
as uniform random across states. We iteratively up-
date the controller and trajectories, ultimately learning
controller wu,(x) (see Section III-D for details). As
a result, the trajectories are distributed according to
the same probabilistic law distribution as the initial
state?, which we can denote as ¢ ~ P, with a slight
abuse of notation. We seek to learn a controller u,
and a certificate Vj such that, with high confidence,
the certificate conditions hold for a new trajectory
sampled from [P, . This is a generalisation problem:

't is relevant to highlight how both the learned certificate Vp(z)
and controller u,(z) carry a direct dependency on the number of
samples N. This dependency has been dropped here to ease the
notation.

2This occurs due to the absence of stochasticity in the system
dynamics for a given realisation ¥ of the uncertain parameter.

ensuring that a controller optimised on a finite training
set remains valid in unseen scenarios.

A. Probabilistic Guarantees

We frame the synthesis problem within the context
of PAC compression learning. Given a user-specified
confidence level 5 € (0,1), we aim to determine a
risk level € € (0,1) such that the probability of the
synthesised certificate failing on a new trajectory is
bounded by e. Formally, denoting as D = {¢}V,
the dataset of trajectories generated by an initial con-
troller ug, and as A our synthesis algorithm producing
(Vo, up) = A(D), we require:

PN {De = |, : Py {€ €50, v Greacn()} <€} >1-8
(IIL.1)
where —reacn(€) indicates that a trajectory & violates
the reachability property. To establish this bound, we
utilise the concept of a compression set Cy C D. A
subset of the data is a compression set if the algorithm
produces the same output when trained on this subset
as it does when trained on the full dataset: A(Cy) =
A(D). The cardinality of this set, Cy = |Cn|, serves
as a measure of the complexity of the solution relative
to the data, and is known as the compression. We rely
on the following assumptions regarding the distribution
and the algorithm to retain the PAC bound from [!]:

Assumption III.1 (Non-concentrated Mass). For any
fixed controller u, the induced probability measure
satisfies P, {&} = 0 for any single trajectory £ € Z,, y.

Assumption IIL.2 (Algorithmic Properties). The syn-
thesis algorithm A satisfies the following properties:

(i) Preference: If a subset Cy C Co C D is not a
compression set for Co, it remains not a compres-
sion set of superset Co U {{} for any € € =.

(ii) Nomn-associativity: If C compresses a dataset aug-
mented with any future sample, it must compress
the dataset augmented with all future samples.

(iii) Controller Evaluation: The output of the algo-
rithm remains unchanged if the input trajectories
{& lNzl are re-generated using the synthesised
controller ., instead of the initial controller uy.

Note that these assumptions are equivalent to those
in [ 1], with the addition of the last assumption required
to ensure convergence with a varying controller. Under
these assumptions, the following theorem provides the
link between the compression C'y and the risk e.

Theorem III.1 (Generalisation Bound). Consider any
algorithm A satisfying Assumption II1.2 and generat-
ing a valid certificate Vy for property II.1 from i.i.d.
trajectories {&'}N. | satisfying Assumption IIL1. Fix
B € (0,1). Let k € {0,...,N}. If k < N, let



e(k,B,N) be the unique solution to the polynomial
equation in ¢ in the interval [k/N,1]:

4N m
B @(1 —t)m N =1,

1.2
6N (IIL.2)

m=N+1 (k)
while for k = N, let ¢(N, 3, N) = 1. Then, if the al-

gorithm returns a compression set of size Cn = |Cn

the risk bound in (I1L.1) holds with ¢ = ¢(Cn, 3, N).

’

A rudimentary proof is provided in Appendix A.

B. Controller constraints

To ensure the control inputs respect the hyperrectan-
gular actuation limits of the dynamical system u €
[tmins Umax), We apply the following transformation
to the network output @, (z):

Umax — Umin Umax + Umin

5 tanh(a,(x)) +

uﬁ (‘r ) = 2 I

(II1.3)
where tanh(-) is applied elementwise, and Umax, Umin
are vectors defining the limits of the hyperrectangular
control region Y. This ensures the controller is valid
by construction, removing the need to enforce input
constraints via the loss function.

C. Loss function

The optimisation objective is defined via a loss func-
tion £(6,1,&,v) = 128(0,m,&,v) + 15(0). The term
1 () is sample-independent and enforces the structural
requirements on the certificate (IL.2)—(IL.5). Without
loss of generality, we can assume this term can be
driven to zero. This occurs as, given a sufficiently
expressive function approximator, we can find a certifi-
cate which satisfies the above structural requirements.
As in [1, Section 4.3], we approximate the loss spatial
integrals via summation over dense grid sets Xz, &7,
and Xj:

1
1°(0) := E g max{0, —J — Vp(x)}
G reEXF
1
+ = max{0, Vyp(x
] mEEXI {0, Vo(2)}

+ % > max{0, —Vy(2)}, (I11.4)

rEXy
where X approximates the set of points inside the
domain but outside the goal region X \ Xqg, X
approximates the initial set X, and X approximates
the domain border 0X. The sample-dependent loss
12 enforces the decrease condition (IL.6) along the
sampled trajectories. Crucially, this term depends on

both the certificate and the controller parameters. For
reachability, the loss is defined as:

ZA(Q,n,f,v) = max{(), . (Vg(aﬁ[k‘—i—l])

max
kg —

~Vi(alk])) ~ = ( sup Vo(w) +5) } (IIL5)
T yeXT

where the dependency on n and v emerge from the
computation of z[k + 1] = f(x[k], u,(x[k]),v), and
v is the realisation of the uncertain parameter corre-
sponding to trajectory £. Minimising this loss implies
driving the system towards the goal set while satisfying
the certificate’s decrease requirement.

D. Algorithms

To solve the optimisation problem while identifying
the compression set, we employ a two-stage iterative
procedure. Due to constraints on the page count for
this paper, the pseudocode for the algorithms has been
included in Appendix D. The Inner Loop (Algorithm
A.1) optimises the certificate parameters 6 and con-
troller parameters 7 for a fixed set of trajectories using
a modified SSD scheme. This algorithm proceeds sim-
ilarly to [1, Algorithm 1], with modified gradient com-
putations that account for the controller parameters and
an altered “jump” condition that yields improved per-
formance. Specifically, rather than triggering a “jump”
whenever a subgradient is misaligned, we continue
the iterations until the parameters achieve zero loss
on the current running compression set and only then
“jump” to the sample attaining the current maximum
loss. This mechanism provides an alternative way to
balance exploitation and exploration: we first optimise
with respect to the present sample until the controller
satisfies the associated conditions (exploitation), and
subsequently augment the compression set Cy with a
new sample once this has been achieved (exploration).
This behaviour is illustrated in Figure III.1.

Loss ,

I = .
Parameter Space

Fig. III.1: Graphical representation of Algorithm A.1.

The Outer Loop (Algorithm A.2) manages the trajec-
tory generation. Since the trajectories £ depend on the
controller u,,, they must be updated as 7 evolves. The



outer loop iteratively calls the inner loop to update pa-
rameters, then regenerates the trajectories Sy using the
new controller u,, and the sampled parameters {v'}.
This process repeats until the parameters converge and
the loss on the active trajectories is zero. The set of
samples R discarded throughout this process forms
the final compression set used to calculate the risk e.
The combination of Algorithms A.1-A.2 also satisfies
Assumption III.2. A proof sketch for this is provided
in Appendix B. Additionally, throughout numerical
examples (see Section V), the synthesis procedure
outlined above exhibited termination for all trial initial
conditions. Although a proof is not provided in this pa-
per, we hypothesise that, due to the similarity with [1,
Algorithm 1-Algorithm 2], the nested Algortihm A.1-
Algortihm A.2 procedure is guaranteed to terminate,

driving loss function £(6,7,&,v) to zero®.

IV. CONTROL PERSPECTIVE

While the data-driven framework presented above
guarantees robustness through reachability certificates,
its connection to classical optimality is profound. In
Optimal Control Theory, the central object of study
is the optimal Value Function, V*(z), which rep-
resents the minimum cost-to-go from any state .
For the discrete-time system (I.1) and cost functional
(1.2), the optimal Value Function satisfies the discrete-
time HJB equation, often referred to as the Bellman
Equation (I.3). This equation can be directly obtained
from the Principle of Optimality (see Theorem 20.1 in
[4]). We detailed this derivation in Appendix C. We
turn to linking the optimal value function V*(z) to
the control certificate function Vy(x) associated with
the reachability property @reacn(€). The connection
becomes clear when examining the structure of the
decrease certificate condition (II.6). The reachability
certificate requires the function Vy to decrease along
the system trajectories. Fixing a realisation of the
uncertain parameter v, the decrease condition (IL.6) is
of the form

Vo (fo(z,uy)) = Va(z) <7,

where v depends on the supremum attained by Vy(z)
over the initial set X; and design parameter d. Re-
arranging the Bellman equation (I.3), we obtain that
the optimal value function V*(z) must satisfy the
condition V*(f(z,u*)) — V*(z) = —L(t, z,u"),
where u* is the optimal control policy defined as
u*(z) = argmin, {L(¢,z,u) + V*(fs(z,u))}. Re-
laxing the condition, the value function V(z) must
satisfy:

V(fo(w,u*)) = V(z) < —L(t, x,u").

av.y

av.2)

3Note that the sample independent loss function 1°(6) is guar-
anteed to converge to zero since it is unchanged compared to
its formulation in [I], thus the statement only depends on the
conver f sample-dependent loss function I* (6
gence of sample-dependent loss function (< (6,7, &, v).

For a standard optimal control problem with a positive
running cost L(t,z,u) > 0, identifying the certifi-
cate decay term ~ in (IV.1) with the negative term
—L(t,z,u) in (IV.2), we observe that the certificate
condition is structurally equivalent to the relaxation of
the Bellman equation.

In our data-driven approach, the sample-dependent loss
function 12(0,7,&,v) in (IILS5) penalises deviations
from a specified decrease condition. If we select the
running cost L(¢,x,u) to be compatible with the
reachability objective (e.g., a quadratic regulator cost
that penalises distance from the goal), the minimisation
of I® acts as to minimise the upper bound of the
Bellman residual:

R(0,n) = |V9 (fo(z,up())) — Vo(z) + L(t,z,un(x)ﬂ ,

where the effective running cost L is implicitly de-
termined by the specified decay rate (the supremum
term) of the certificate. Specifically, by driving I® to
zero, we force the learned certificate Vy to behave like
a Control Lyapunov Function that upper-bounds the
optimal cost-to-go, whilst simultaneously learning a
controller u,,. This formulation invokes the concept of
inverse optimality [5, Section 3.5], which states that
a stabilising control law derived from a Lyapunov-
like function is optimal with respect to some mean-
ingful cost functional. Therefore, given an appropriate
choice of goal set X, the synthesised controller u,
approximates the optimal policy v* for a given choice
of initial set X;. As demonstrated through numerical
experiments (see Section V), the policy learned via this
robust certificate synthesis closely mirrors the optimal
policy derived from solving the HIB equation.

V. NUMERICAL EXPERIMENTS

To validate the theoretical connection between the
synthesised certificates and optimal control, we apply
our methodology to a benchmark unstable dynamical
system. We compare the robust controller learned via
the synthesis procedure of Algorithms A.1-A.2 against
the optimal policy derived from solving the discrete-
time Bellman equation on a grid. All experiments
were implemented in Python 3.12. Simulations
were carried out on the baserver.cs.ox.ac.uk
server, which contains 80 2.5 GHz CPUs and 125
GB of RAM. The code used to generate the results
presented in this section is made available at the
following repository*:

https://github.com/ClouD-161803/fossil_scenario.git

A. Problem Setup

We consider the unstable planar system with state
vector x[k] = (z1[k], z2[k])T evolving according to:

x[kﬂ]:{oj ?i] x[k]+m w(z[k]), (VD)

4A Linux distribution is recommended for this repository.
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Fig. V.1: Reachability certificate synthesised from /N = 1000 trajectories. The certificate acts as a Lyapunov
function, decreasing along state trajectories from the initial set X; (blue box) into the goal set X (green

circle).
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Fig. V.2: Comparison between the data-driven controller and the optimal controller. The learned policy (left)
smooths the optimal switching surface (right) while maintaining the correct global structure required to stabilise
the system (in spite of vertical shift and stretching due to the dependency on an initial set).

where the uncertain parameter v is distributed in the
interval ¥V := [—0.5,—0.3]. The (univariate) control
input is constrained to the set U := [—4,4]. The
objective is to drive the system from an initial set
X1 = [—1,1] x[4,4.5] to the unit-radius Euclidean ball
centred at the origin: we define the goal set as Xg =
{z € R? : ||z||2 < 1}. The time horizon is chosen as
T = 100, and the discretisation interval as T; = 0.1
For the data-driven synthesis, we parameterise both the
certificate Vy and the pre-activation controller ,, using
fully connected neural networks with 2 hidden layers
of 5 neurons each and sigmoid activation functions.

The final control output is passed through a tanh
function as per (III.3) to satisfy the actuation limits.
We choose both probability distributions P, and P,
as uniform across their respective domains, and draw
N = 1000 independent sample pairs for training.
Using an initially random uniform controller ug, we
uncover the corresponding initial trajectories {£}2 ;.
We set the required confidence level to 1 — § =
1 — 1075, We implement Algorithms A.1-A.2 as a
PyTorch solver, and set up the loss function £ as the
sum of a sample-independent component [° as in I11.4
and a sample-dependent component [* as in IIL5.



B. Certificate and Controller Synthesis Results

The synthesis procedure converged after 60,190 sec-
onds. The resulting compression set Cy yielded a
PAC risk bound of ¢ = 0.068 (computed using
Theorem III.1). Figure V.1 visualises the learned cer-
tificate. The surface plot (Figure V.la) demonstrates
the function’s global structure, while the phase plane
(Figure V.1b) shows the zero-level set Vy(z) = 0
(dashed line) and the compression set trajectories (blue
lines). As expected, the certificate is negative on the
initial set (blue rectangle) and positive outsite the
domain (black box), and the system trajectories (grey
arrows) flow inwards across the level sets towards the
goal set (green circle), with no recorded violations of
certificate conditions (II.2)—(I1.6).

C. Comparison with Optimal Control

To investigate the optimality of the learned controller,
we numerically solved the Bellman equation (I.3) for
the nominal system, using a realisation of parame-
ter value v as the mean of its range, v = —0.4.
We employed Value Iteration on a discrete 50 x 50
grid over the domain X := [—4,4]%. The running
cost function was chosen as a quadratic regulator
L(z,u) = 27Qx + u" Ru with Q = I and R = 0.1
and zero terminal cost K (z[T]) = 0, simultaneously
penalising distance from the origin and control effort
(although priority was given to the former). Figure V.2
compares the data-driven controller (Figure V.2a) with
the numerically derived optimal policy (Figure V.2b).
Both controllers exhibit a “bang-bang” like structure,
applying maximal negative effort in the region where
1, T3 > 0 to counteract the instability. However, sev-
eral key differences illustrate the specific nature of our
data-driven approach. First, the synthesised controller
is much smoother than the optimal policy. This is a di-
rect consequence of the tanh activation function used
in the neural network parameterisation, which acts as
a regulariser compared to the discrete minimisation
in Value Iteration. Second, the data-driven controller
is robust to uncertainty: it was trained to satisfy the
decrease condition across the entire distribution of
v € V, whereas the optimal policy is specific to the
nominal case ¥ = —0.4. The conservative slope of
the data-driven policy reflects the need to maintain
stability even for the worst-case parameter realisations.
Finally, the parametrised controller applies zero (and
not positive) control efforts for stable states. This high-
lights the dependency of the data-driven framework
on the choice of specific initial and goal sets, which
direct the optimiser towards specific portions of the
state space. On the other hand, the optimal controller
directly computes the best action for any initial sate
and with a singleton goal set (the origin). Nonetheless,
these results confirm our theoretical assertion: by min-
imising the certificate decrease violation, the synthesis
procedure finds a controller that approximates the

optimal policy, providing a data-driven, scalable, and
robust alternative to directly solving the HIB equation.

VI. CONCLUSION

This paper has presented a framework that provides a
first step towards bridging data-driven certificate and
control synthesis and classical optimal control theory.
By extending the subsurface descent (SSD) algorithm
to the problem of joint controller and certificate syn-
thesis, we have demonstrated that scalable, data-driven
verification techniques can approximate optimal con-
trol policies. We established a connection between the
certificate decrease condition (II.6) and the discrete-
time Bellman equation 1.3. We further showed that the
sample-dependent loss function (III.5) used in the data-
driven framework acts as a relaxation of the Bellman
residual. Consequently, minimising this loss implicitly
approximates an inverse optimal control problem. The
resulting certificate function Vj approximates the op-
timal Value Function V*(z), and the synthesised con-
troller u, resembles the optimal policy that minimises
the underlying cost functional. This theoretical insight
was validated through numerical experiments on an
unstable nonlinear system. The data-driven controller,
learned solely from sampled trajectories without direct
access to the system gradients or the HIB PDE, repro-
duced the “bang-bang” structure of the true optimal
policy derived via Value Iteration. Furthermore, the use
of neural network parameterisation provided a smooth,
robust approximation that naturally handles parametric
uncertainty, constituting a significant advantage over
standard grid-based optimal control methods which
struggle with the curse of dimensionality and model
uncertainty.

Future work will focus on further formalising the
link, potentially by deriving explicit bounds on the
suboptimality of the learned controller as a function
of the compression set size. A complete connection
between the data-driven certificate synthesis approach
and optimal control theory might allow future learning-
enabled control systems to be deployed with both
optimality and safety guarantees.
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APPENDIX
A. Proof of Theorem III.1

This proof is largely adapted from []] to include the
new assumption on the learned controller.

Proof. Fix 8 € (0,1) and let C be the compression
set returned by the algorithm. We interpret the algo-
rithm A as a mapping from the dataset to a decision
(Vo, uyy). If the certificate conditions are violated on a
new sample &, the algorithm must produce a different
output when trained on DU{¢} to satisfy the condition
for £. This implies a change in the compression set.
Specifically, let Cf\} be the compression set for the
augmented dataset. We have the inclusion:

{E €E: ﬁ(breach(g)} - {f €= :Cn 75 CJJ\?}

Furthermore, Assumption III.2 (iii) ensures that re-
evaluating the algorithm with trajectories generated by
the learnt controller u, does not alter the compres-
sion set. Thus, the probability of failure on the true
distribution P, is bounded by the probability that
the compression set changes upon observing a new
sample:

Pu,,{f € Eu,,,v : ﬁ¢reach(§)}
< Pun{f S Eu,,}v : CN 7é C]J\?'}

Adopting [3, Theorem 7], this probability is bounded
by ¢(Cn, B8, N) with confidence 1 — 3, where ¢ is the
solution to the polynomial equation provided in the
theorem statement. O

B. Properties of the Synthesis Algorithms

We briefly verify that the synthesis procedure in Al-
gorithms A.1-A.2 satisfies Assumption III.2.

Proof. We consider each of the properties in turn:

(1) Preference: The inner loop (Algorithm A.1) se-
lects samples based on maximal loss. If a subset
is not a compression set, it implies there ex-
ists a sample in the larger set with higher loss
that would be selected. Adding more samples
(D U {&}) cannot resolve this conflict without
including the problematic sample, preserving the
non-compression property (and we cannot add
repeated samples due to Assumption III.1).

(i) Non-associativity: This holds by construction of

the greedy addition strategy in the inner loop. If

a set C suffices as a compression set for DU {¢}

for any &, it implies all other samples have non-

positive loss relative to C, which means C suffices
as a compression set for the union of all samples.

(iii) Controller evaluation: The outer loop (Algo-

rithm A.2) terminates only when the controller

parameters 7 converge (1, ~ n—1). At this fixed
point, re-generating trajectories with u,, yields

the same set of trajectories Sy used in the final
optimisation step. Consequently, re-running the
algorithm produces the exact same parameters
and compression set, satisfying condition (iii).

O

C. Derivation of the Discrete-Time Bellman Equation

We derive the discrete-time Bellman equation starting
from the fundamental Principle of Optimality provided
in [4, Page 146].

Proof. Consider the value function V' (¢, x), represent-
ing the minimum cost-to-go from state x at time
t. According to [4, Theorem 20.1], the Principle of
Optimality states that for any time increment At > 0:

t+At
: {/ L(s, X uy)ds
t

FV(t+ At,ij;gt)}.

inf

Vit =
() wEU(t L+ AL

To transition to the discrete-time formulation used in
our data-driven framework, we apply the following
assumptions:

1) Zero-order hold: The control input wu, is constant
over the interval [t,t + At]. Let ty = kT, denote
the current time step and u[k] the constant control
applied.

2) Euler approximation: For a small time step At,
the integral of the running cost can be approxi-
mated as:

te+At
[ LX) ) ds ~ Lt alt] ulk)-At.

ty

3) Parameter-free dynamics: We fixed a realisation
of the uncertain parameter v as v, yielding a
parameter-free version of control dynamics (I.1):

f(@[k], ulk);v) = fo(z[k], ulk])

Substituting these approximations into the principle of
optimality, absorbing the time step At into the defi-
nition of the discrete running cost L, and considering
the update from control dynamics (I.1) we obtain the
recurrence relation

Vix) = J?é% {L(ty, z[k],w) + V (fo(z[k], ux)) }

and thus arrive at (I.3) by substituting optimal value
function V*(z). O

Note that, in Section I, the dynamics have been hidden
into z[k + 1] to ease the notation.
D. Pseudocode for algorithms

We provide pseudocode for the inner loop (Algo-
rithm A.1) and outer loop (Algorithm A.2) below:



Algorithm A.1 Inner Loop Optimisation

1
2
3:
4:
5
6

21:
22:
23:
24:
25:
26:
27: end function

function A(6,n, D)
Setk+ 0,C+ @
Fix £1 < Lo with |£1 — £0| > (

> ( is a fixed tolerance

while /°(6) > 0 do > Minimise sample-independent loss first via gradient descent

0+ 0 —aVyls ()
end while

repeat
k«k+1
§€ argmaxg.p, £(6, 17, 2
gC € argmaxégc ‘qaa 7, g)
gD — (VQE(G, m, E)

yC — (V0£(977],§c)» 7]£ 777756))

> Find worst-case sample in dataset

> Find worst-case sample in compression set

> Compute subgradients of loss function for &

> Approximate subgradients of loss function for &,

if £(6,71,€:) <0 then

> Subgradient descent & update compression set

0+ 06— agplh)
1 < 1 — agp[n]
C+ Cu{¢} > Add violating sample to compression set
else > Optimise on current compression set
0+ 0 — age[v]
1 <1 — age[n]
end if
Ek — L‘k,1

if maxeee £(0,1,€) < Li—1 then
‘Ck' < MmaXeee ‘c(ov n, f)’ (0*7 77*) A (9’ 77)
end if
until |£k — £k71| <(
return 0%, 7", Cnx = C U argmaxgcp L£(0,7, &)

> Iterate until tolerance is met

Algorithm A.2 Controller Synthesis (Outer Loop)

—
—_

o A A R ol

Initialise 6y, 79 randomly

Sample parameters and initial states Dy < {z[0],v*} ¥, ~ PV

N

Lo . . . N - .
Generate initial trajectories Sp «— {£'};1; € [[;; By vi USING Uy,

SetZ <+ [1,...,N],k+0,C« &
while maxecs, L(0k,n%,€&) > 0 do
repeat
k+—k+1
Ok Mk, C < A(Ok—1,Mk—1,Sk—1)
C«+~CcucC

> Accumulate compression set

Update indices Z; corresponding to samples in C
Update trajectories S «— {'}tiez € [[;e7 Eu,, 0+ using new controller w,,

until 7, =~ 7,1
Sk < Sk—l \C
Update index set 7 to remove discarded indices

15: end while
16: return 60y, n;, Ry (indices of all discarded samples)

> Controller parameters converged
> Discard satisfied samples
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